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SUMMARY

The results of a numerical simulation of flow through an artificial heart and through

an artificial tilting-disk heart valve are presented. The simulation involves solving the

incompressible Navier-Stokes equations; the solution process is described. The details

and difficulties of modeling these geometries are discussed. The artificial heart involves

a piston-type action with a moving solid wall. A single H grid is fitted inside the heart

chamber. The grid is continuously compressed and expanded (the number of grid points

remains constant) to accommodate the moving piston. The valve geometry involves a

tilting disk inside a cylindrical chamber. An overlaid-grid approach is used to simulate

this geometry. The equations must be solved iteratively for each discrete time step of the

computations, thus a significant amount of computing time is required. Approximately

four hours on a supercomputer are needed for one period of the artificial heart's piston

motion. It is particularly difficult to analyze and illustrate the fluid physics represented

by these calculations because of the time-varying nature of the flow, and because the

flows are internal. Three-dimensional graphics and scientific visualization techniques

have become instrumental in solving these problems.

INTRODUCTION

The science of computational fluid dynamics (CFD) uses computers to numerically

solve the governing equations of fluid dynamics. CFD has grown to become a very

powerful tool for studying fluid dynamics, and has been used primarily for problems in

aerodynamics. Advances in CFD along with advances in supercomputer hardware have

made it possible to simulate increasingly complex problems. This paper describes an effort

to simulate the flow inside the chamber of an artificial heart and through an artificial

heart valve. The goal of the work was to apply a CFD computer code to problems in

biofluid mechanics as a demonstration of its capability to impact a broader area than just

aerodynamics. Developing this capability will extend the use of CFD as a design tool into

all aspects of fluid dynamic mechanisms. The analysis of blood flow through the heart,

blood vessels, and various biomedical prosthetic devices requires detailed knowledge of the

flow quantities. Blood may exhibit significant non-Newtonian characteristics locally, and

the geometry of the biofiuid mechanism is usually complicated. Also, the flow is unsteady,

possibly periodic, highly viscous, and incompressible. The problems are interdisciplinary

and an attempt for a complete simulation would at present be nearly impossible. However,



an analysis based on a simplified model may provide much-needed physical insight into

the blood-flow analysis. More comprehensive studies on blood flow are described in

references 1-5.

Various types of prosthetic heart valves have been used to replace natural valves.

Currently, mechanical hearts and heart assist devices are not often used, but they are in

demand as temporary life support systems. Both of these devices have several shortcom-

ings, some of which are directly attributable to the fluid dynamics of the blood. These

shortcomings include large pressure losse s across the valves, which prevent the heart from

working efficiently; separated flow and recirculating regions, which can lead to clotting;

and high turbulent shear stress, which can damage the red blood cells. It is therefore of

considerable benefit to medical researchers to be able to determine the flow characteristics

in these devices by applying state-of-the-art CFD technology. Ongoing work by the au-

thors has included the development of viscous, incompressible flow solvers. This research

is motivated by the need for realistic three-dimensional (3-D) simulations in aerospace

applications, such as the flow of liquid fuel through the Space Shuttle main-engine power
head.

The present numerical simulation of blood flow through an artificial heart is believed

to be a unique undertaking. There has been some work involving the simulation of

flow through a model of an actual heart (see ref. 6). Previous numerical studies have

modeled the steady-state flow through artificial heart valves in the fully open position.

Underwood and Mueller (refs. 7 and 8) obtained the flow characteristics for a Kay-Shiley

disk type valve. Their results showed agreement with experimental data for Reynolds

numbers up to 600. Idelson et al. (ref. 9) modeled the flow through Kay-Shiley caged

disk, Start-Edwards caged ball, and Bjork-Shiley tilting disk valves, and compared their

performance. A maximum Reynolds number of 1500 was reached in their numerical

study. In the above studies, the caged disk and caged ball geometries were assumed to be

axisymmetric, and the tilting disk geometry was simplified to two dimensions. In reality

the geometries are 3-D, the flow is unsteady, and the Reynolds numbers are as high as

6500. The current work with an artificial heart valve involves a computational study of

3-D steady-state and unsteady flow through the Bjork-Shiley tilting disk at Reynolds

numbers from 2390 to 6400.

The simulation of flow through these devices is computationally expensive. The

elliptic nature of the incompressible flow equations requires an iterative method of solution

in order to get a time history of the flow. Obtaining accurate flow solutions for geometries

of this complexity requires that a large number of discrete points (on the order of 100,000)

be used to define the computational grid. The quantities that define the flow field (for

incompressible flow) are the three velocity components and the pressure. The result of

the numerical calculations is a value for each of these quantities at each of the discrete

points in the grid. If a solution is obtained for 100 discrete points in time (which may

only represent a small interval of the total timespan of interest), it requires on the order

of 10 s words of disk storage. This includes the storage of the physical coordinates of

the grid points which must be saved when the geometry varies with time. The code

requires approximately 10 -3 CPU see per grid point per physical time step on a Cray 2

supercomputer, and about 3 hr for the simulation of one time interval.

The primary purpose of the current work is to apply NASA-developed technology



to researchon this type of hardware. NASA benefits from advancements in CFD for

treating unsteady internal flow with moving boundaries, whereas the manufacturers of

biofluid devices benefit by gaining a better understanding of the fluid flow within the

devices and, presumably, an improved design. In the following sections a brief description

of the flow solver algorithm is given, followed by a description of the geometry definition

and grid generation. Then the results of the computations are presented.

This work is part of a joint effort with Pennsylvania State University and Stanford

University and is partially funded by the NASA Technology Utilization o_ce.

COMPUTATIONAL SOLUTION METHOD

Recent developments in the numerical solution of the incompressible Navier-Stokes

equations include an algorithm for time-dependent flows (refs. 10 and 11). This algorithm

was implemented in a computer code called INS3D-UP, and was used for all of the

calculations presented in this paper. The code solves the equations governing the flow

of a constant-density, viscous fluid. A generalized curvilinear coordinate system is used

which allows the use of a body-fitted grid, making it possible to readily solve for the flow

over many varied shapes. The governing equations are elliptic, and, correspondingly, the

speed of sound in the fluid is infinite. This means that information must be propagated

from one region of the flow field to all other points in the field in the interval of one discrete

physical time step. Therefore, some type of iterative technique must be used when the

flow quantities are updated from one time step to the next. The approach taken by the

current computer code is the method of artificial compressibility. This is implemented

by introducing a pseudotime derivative of pressure to the continuity equation, which

is otherwise a statement that the divergence of velocity must be zero. By performing

subiterations of this equation coupled with the momentum equations, the divergence of

velocity is driven to zero as the subiterations converge. The concept is straightforward:

suppose that in one grid cell there is a net flux of mass leaving the cell, so the divergence

of velocity is positive. There is then a drop in pressure during the next subiteration,

which through the momentum equations will generate a force tending to pull the fluid

back into the cell, driving the divergence of velocity toward zero.

The resulting equations are solved as follows. The convective fluxes are discretized

using an upwind-differencing scheme known as flux-difference splitting. This is based

on Roe's scheme (ref. 12) and is third-order accurate in space. The upwind scheme has

several advantages over the simpler and more traditional central-difference approaches.

First, the system of numerical equations resulting from the upwind scheme is more nearly

diagonally dominant than that resulting from the use of a central-difference scheme. This

diagonal dominance leads to fast convergence in the subiterations. Second, the upwind

approach does not require the user to specify artificial dissipation coefficients, which would

be needed to stabilize nonlinear osciUations accompanying a central-difference scheme.

The viscous fluxes are discretized using second-order central differencing, thus the overall

spatial accuracy is second order. The time integration is second-order accurate. Once

the numerical equations are formed they are solved using an unfactored, implicit, line-

relaxation algorithm which has proved to have good stability and convergence character-



istics. The boundary conditions used with this flow solver are implicit and nonreflective

at the inflow/outflow boundaries.

GEOMETRY AND GRID GENERATION

In this section the geometry definition and grid generation for the two different

devices are discussed. Both devices present a challenge, as they both have moving parts

and unusual shapes. There are two basic approaches to developing a grid which is fitted

to all parts of the body, both moving and stationary. In the first approach, a single grid is

used and is allowed to move to conform to the motion of the surfaces. A second method,

known as the Chimera grid embedding technique (refs. 13 and 14), uses a number of

overlaid grids superimposed on each other. This technique allows one grid to be placed

around a moving surface, and another to be used for the stationary part of the body; thus

the grids move relative to each other. Information is passed between the boundaries of the

overlapping grids by interpolating the flow quantities from one grid and then specifying

these values as boundary conditions on the other. Although this leads to more overhead

in the computation, it makes the grid generation simpler.

Artificial Heart

A computer-generated shaded-surface representation of an artificial heart devel-

oped at Pennsylvania State University is shown in figure 1. The heart is composed of

a cylindrical chamber with two openings on the side for valves. The pumping action

is provided by a piston surface which moves up and down inside the chamber. A tube

extends out of each of the valve openings. The tubes contain tilting flat disks which act

as the valves. The current computational model neglects the valves altogether and uses

the right and left openings for the inflow and outflow boundaries, respectively. In the

computations, as the piston reaches its top-most position, the outflow valve closes and

the inflow valve opens instantaneously. Similarly, as the piston reaches its bottom-most

position, the outflow valve opens and the inflow valve closes.

In the actual heart device, the piston moves through the entire chamber, across

most of the valve opening. This first attempt at computing the flow uses a single grid,

with a constant number of grid points, which expands and contracts with the motion of

the piston. A new grid is generated for each time step during the running of the code.

For the implementation of the boundary conditions at a valve opening, it is necessary to

place the grid lines around the valve to coincide with the valve opening boundaries. Yet

because the piston moves past this opening, the grid has to accommodate both surfaces.

It is very dimcult to generate a grid without any grid lines crossing over each other. A ....

satisfactory grid has not been obtained for the point in time when the piston moves past

the bottom of the openings for the valves. The current computation therefore restricts

the motion of the piston such that it stays below the valve openings.

To make the most emcient use of grid points, an H-H grid topology was used to

fit the grid to the physical domain. Because of computational time limitations of the

flow solver, the grid dimensions were chosen to be 39 x 39 x 51 grid points. In order to
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Figure 1. Artificial heart geometry showing valve openings.

generate a grid at each time step for this geometry, the surface grid was first generated,

and an algebraic grid generator and elliptic smoother were used to generate the interior

points using the distribution given on the surface grid. To generate the surface grid the

side boundary was divided into seven zones. The points were distributed along each of

the zonal boundaries, and then a biharmonic solver written by Bjorstad (ref. 15) was

used to generate the grid interior to each of the surface zones. The biharmonic solver

was also used to generate an H grid for the top and bottom surfaces of the heart device.

This approach made it relatively simple to repeat the process at each time step for any

position of the piston surface. Figure 2 shows the unwrapped surface grid on the side of

the heart chamber.

Figure 2. Unwrapped side surface of the artificial heart.

5



Tilting-Disk Valve

The computational geometry for the Bjork-Shiley tilting-disk heart valve is shown

in figure 3. The disk motion is illustrated by showing three different positions of the

disk. The disk angles shown are 75 °, 50 °, and 30 °, as measured from the centerline of
the aorta. The disk rotates about an axis which is one-sixth of a disk diameter below

the center of the disk. The inflow conditions are symmetric, allowing an assumption of

overall bilateral symmetry.

Figure 3. Geometry of the prosthetic tilting-disk valve.

The only way to model this geometry with an ordered grid is to use a multizonal

approach. Since there are moving parts, the chimera grid embedding technique is a

straightforward metho d to use. Two overlapped grids are used, as shown in figure 4.

Grid 1 occupies the entire region of the aorta, from entrance to exit, and always remains

stationary; grid 2 wraps around the tilting disk and moves with the disk. Points from grid

2 that lie outside the aorta grid are excluded from the solution process. The excluded

points are called hole points, and the points next to the hole points are called fringe points.

The information is passed from one grid to another via fringe points by interpolating the

dependent variables.
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Figure 4. Overlaid grids used for the prosthetic tilting-disk valve.

COMPUTED RESULTS

The calculations for the artificial heart chamber were done on a Cray 2 supercom-

puter, and the calculations for the valve were done on a Cray XMP.

Artificial Heart Computations

The computations were initialized with the fluid at rest, with the piston at the

bottom position and the outflow valve open. The computations were carried out for a

Reynolds number of 100 based on unit length and velocity, and the flow was assumed

to be laminar. In the actual artificial heart the Reynolds number is about 600, and

regions of the flow are turbulent. The laminar assumption was used here because the

main purpose of this calculation was to test the ability of the flow solver to compute

flow through this complicated geometry, separate from the effects of using the turbulence

model. Finally, the fluid was assumed to be Newtonian, as in the experiment of Tarbell

et al. (ref. 4), in which a water-and-glycerin fluid with viscosity nearly the same as bIood

(about 3.5 centipoise) was used. Unlike blood, the glycerin mixture exhibits a Newtonian
fluid behavior.

The physical time step, At, was set to 0.025. Larger values of At tended to make the

computation unstable. The piston moved with a constant non-dimensionalized velocity

of 4-0.2 between its top and bottom positions, thus 200 physical time steps were required

for one period of the piston's motion. During each time step, the subiterations were

carried out until the maximum residual dropped below 10 -3 or until a maximum of 20

subiterations were done. During most of the piston's cycle only 12-15 subiterations were

required, but when the piston was changing direction, complete convergence was not

achieved in 20 subiterations. This did not cause any stability problems, yet it remains to

be seen what effect it had on the accuracy of the solution. The computing time required

for each period of the piston's motion was approximately 4 hr. The computations were

run for four periods, during which the particle paths were computed after the particles
were released near the inflow valve.

Once the computations are completed, the results must be interpreted for an un-

derstanding of the fluid physics involved. Since the flow is time dependent, a lot of data

are produced, and the problem is essentially four-dimensional. It is difficult to show the



(a) Computational results.

(b) Experimental results.

Figure 5. Incoming particle tracesfrom computations, and photograph of experimental
results_as the piston nearsthe bottom position.
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physics of the fluid using two-dimensional media. There are several methods of present-

ing the data, including drawing color contours of scalar variables such as pressure, and

drawing vectors of data such as velocity. One of the best methods is to plot particle

traces. This is done by integrating the velocity field in time to produce lines which show

the path traveled by a series of fluid particles. This method can give a fairly complete
visualization when the lines are animated on a computer. In addition, the color of a

particle trace can vary along its path in proportion to some scalar variable of interest,

adding more information about the flow field.

Figure 5(a) shows some of the particle traces as the piston nears its bottom position.

Two distinct vortices have formed from the flow separating as it enters through the

inflow valve and encounters the lower pressure regions near the valve. In figure 5(b), an

experimental photograph (J. M. Tarbell, personal communication) shows bubbles entering

the inflow valve as the piston nears its bottom position. A similar two-vortex system is

seen here.

Valve Computations

The geometry used in these calculations is similar to that used in the experimental

studies of Yoganathan, et al. (refs. 16 and 17) (steady-state) and of Figliola and Mueller

(ref. 18) (unsteady). The inflow and outflow boundaries for the calculations were specified
to be a shorter distance from the valve than they were in these experiments. This reduced

the computational requirements for the problem. The exact shape of the sinus region of

the aorta used in the experiments is not known. These discrepancies could lead to slight

differences between the computational results and the experimental data. The Reynolds

numbers used in the calculations are based on the disk diameter and the mean velocity

at the entrance of the channel. The physiological range of Reynolds numbers for these

problems is in a regime where turbulence will be important. The computations use an

algebraic mixing-length turbulence model to compute a turbulent viscosity which models

the turbulence effects.

Steady-State Computations.- Steady-state calculations were carried out with

the disk at 30 ° and with Reynolds numbers ranging from 2000 to 6000. Figure 6 shows

the pressure drop across the valve at different flow rates of physiological interest, from the

computations and from the experimental results of Yoganathan et al. (refs. 16 and 17).

There is good agreement between the two. In figure 7, the axial velocity profile down-

stream of the disk in the horizontal plane through the center of the channel is plotted

for both the computations and the experiment, for a Reynolds number of 5972. Again,

there is fairly good agreement. The largest discrepancy is seen near the walls, where the

boundary-layer thickness is overestimated by the calculation. This is most likely a result

of inaccuracies of the turbulence modeling. Figure 8 shows velocity vectors in the lateral

plane of symmetry, also for a Reynolds number of 5972. The recirculation region in the

sinus area of the aorta, and a large separated region along the lower wall of the aorta,

can be seen.

Unsteady Computations.- The computations of the unsteady flow begin with
the disk dosed and the fluid at rest. The flow is started by specifying velocity at the inflow

boundary, and the disk starts to rotate open. The Reynolds number is 6400. Figure 9
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Re = 5972.

shows the velocity vectors in the lateral plane of symmetry. The three plots illustrate the

flow for disk angles of 75 ° , 45 ° , and 20 ° . The separation region along the lower wall of

the aorta is compressed as the disk rotates to its open position. When the disk begins

to open, the flow starts to separate behind the disk, and it reattaches to the wall. The

vortices in the sinus region of the aorta grow during this process.

Figliola and Mueller (ref. 18) experimentally measured the velocity near the top

and bottom walls, and computed the shear stress. The maximum shear was observed

to occur at the top wall just downstream of the sinus region of the aorta. This is in

agreement with the velocity plots shown in figure 9, in which there are large velocity

components just off the wall in that location. This phenomenon is particularly evident

when the valve starts to open, as can be seen in the first plot in figure 9.

CONCLUSIONS

An algorithm for computing unsteady incompressible Navier-Stokes equations has

been extended to simulate the flow through an artificial heart and past a tilting-disk heart

valve. The solution shows the capability of the computational procedure for simulating

complicated internal flows with moving boundaries. The calculations require a significant

amount of computing time on a supercomputer, but the potential payoff in understanding

the complex flow physics inside these devices is large. Several simplifying assumptions
were made for the artificial heart calculation, such as the restricted piston motion and the

low Reynolds number. However, the success of the subsequent valve calculations shows
that this weakness can be overcome. The use of the chimera overlap-grid strategy will

make it possible to move the piston through the entire chamber without causing grid

generation problems. The turbulence model used in the valve calculations will enable the

use of more realistic Reynolds numbers. Work is under way to calculate the flow through

an entire artificial heart, complete with inflow and outflow tilting disk valves.
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The next step will be to reduce the turn-around time needed for a computational

solution. Since it takes 10-20 hr of computer time to simulate the pumping of an artificial

heart complete with valves, and because supercomputers often have long queues, the

current turn-around time for detailed flow information is often many days. Improvements

both in algorithm efficiency and in computational speed of the computers are needed.
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